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Abstract: The liver plays a crucial role in regulating lipid metabolism. Our study examined the
impact of Exosomes derived from adipose mesenchymal stem cells (ADSCs-Exo) on lipid metabolism
following liver ischemia-reperfusion injury (IRI) combined with partial hepatectomy. We developed
a miniature swine model for a minimally invasive hemi-hepatectomy combined with liver IRI. In
this study, we administered PBS, ADSCs-Exo, and adipose-derived stem cells (ADSCs) individually
through the portal vein. Before and after surgery, we evaluated various factors including hepatocyte
ultrastructure, lipid accumulation in liver tissue, and expression levels of genes and proteins associ-
ated with lipid metabolism. In addition, we measured serum and liver tissue levels of high-density
lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides (TG), and total cholesterol (CHOL).
TEM and oil red O stain indicated a significant reduction in liver steatosis following ADSCs-Exo
treatment, which also elevated serum levels of HDL, LDL, TG, and CHOL. Additionally, ADSCs-Exo
have been shown to significantly decrease serum concentrations of HDL, LDL, TG, and CHOL in
the liver (p < 0.05). Finally, ADSCs-Exo significantly downregulated lipid synthesis-related genes
and proteins, including SREBP-1, SREBP-2, ACC1, and FASN (p < 0.05), while upregulating lipid
catabolism-related genes and proteins, such as PPAR-α and ACOX1 (p < 0.05). ADSCs-Exo as a
cell-free therapy highlights its therapeutic potential in hepatic lipid metabolism abnormalities.

Keywords: hepatectomy; ischemia-reperfusion injury; adipose mesenchymal stem cell-derived
exosomes; lipid metabolism; miniature swine

1. Introduction

Liver ischemia-reperfusion injury (IRI) is a common complication of hepatic resection,
liver transplantation, and hemorrhagic shock, and is the result of the reestablishment of
blood flow to hepatic tissues after the interruption. When liver IRI occurs, it can cause
an acute inflammatory response, leading to significant hepatocellular injury and liver
dysfunction, and even multi-organ failure. Since the concept of IRI was first introduced in
the 1960s, no effective drugs have been developed for clinical intervention [1,2].

It is well known that the liver is an important regulator of metabolic homeostasis and
is involved in metabolic activities such as lipid and glucose metabolism. In the event of
liver damage, the organ’s metabolic function becomes particularly vulnerable to irregulari-
ties, which can ultimately result in the development of metabolic disorders [3]. Previous
studies have shown that when IRI occurs in the liver, a large amount of abnormal lipid
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accumulation is found in the liver [4], suggesting that lipid metabolism disorders develop
following liver IRI. This suggests that lipid metabolic signaling may play a key role in
triggering ischemia-reperfusion-induced hepatocyte injury, providing an interesting link
between metabolism, inflammation, and liver IRI [5]. Lipid metabolism includes lipoge-
nesis, lipolysis, and lipid oxidation, and the liver is a crucial organ for lipid metabolism
and the maintenance of lipid homeostasis [6]. Normal lipid metabolism in the liver consists
of four main processes: lipid synthesis, uptake, efflux, and oxidation. Hepatocyte mito-
chondria, peroxisomes, and mitochondrial β-oxidation are involved in lipid metabolism [7].
Peroxisome proliferator-activated receptor alpha (PPARα) is a pivotal transcription factor
for fatty acid (FA) beta-oxidation. Upon entering hepatocytes, triglycerides (TG) and FA
stimulate mitochondrial β-oxidation, which in turn produces ATP through the modulation
of its downstream targets, including carnitine palmitoyltransferase 1A (CPT1A), carnitine
octanoyltransferase (CROT), and Acyl-CoA oxidase 1 (ACOX1), by peroxisome proliferator-
activated receptor alpha (PPARα). The remaining portion is stored as lipid droplets in
hepatocytes in the presence of stearoyl coenzyme A desaturase 1 (SCD1), acetyl coenzyme
A carboxylase (ACC), and fatty acid synthase (FASN) [8,9]. Furthermore, sterol regula-
tory element binding protein 1 (SREBP-1) and sterol regulatory element binding protein
2 (SREBP-2) are crucial regulators of lipid and glucose metabolism, exerting significant
influence on the stimulation of lipogenesis, gluconeogenesis, and the pentose phosphate
pathway [9]. The principal factors associated with lipid metabolism interact in a harmo-
nious manner to sustain the dynamic equilibrium of lipid metabolism in hepatic tissues.
This process can markedly enhance the recuperation of liver function and mitigate the
severity of liver injury [10]. Thus, rectifying the disruption of lipid metabolism following
liver IRI is a key factor in mitigating liver damage.

Mesenchymal stem cells (MSCs) are pluripotent cells with the capacity to differentiate
into various different mesenchymal cell lines. The capacity for self-renewal, multispectral
differentiation potential, paracrine effects, and immunomodulatory properties render
this a promising candidate for research in regenerative medicine. MSCs are used in the
treatment of alveolar ridge fracture defects, jaw defect reconstruction, and maxillary sinus
augmentation with good results [11–13]. The role of MSCs in attenuating myocardial
injury was first reported in 2002 and purified bone marrow mesenchymal stem cells
transplanted into the mouse heart appeared to differentiate into cardiomyocytes [14].
Adipose-derived mesenchymal stem cells (ADSCs) are among the most commonly utilized
types of MSCs in research due to their convenient accessibility, high yield [15], rapid
proliferation [16], and low immunogenicity [17]. Recent studies have shown that MSCs
may not act directly, but rather through the secretion of Exosomes (Exo), which are usually
between 30 and 150 nanometers in diameter [18]. In addition, Exo may have advantages in
immunomodulation, anti-inflammatory functions, and tissue regeneration compared to
parental MSCs [19]. Therefore, Exosomes derived from MSCs (MSCs-Exo) are increasingly
recognized as effective non-cellular substitutes for tissue repair and regeneration [20].
Previous studies have demonstrated the protective effects of MSCs-Exo against IRI in
various tissues, including the brain [21], myocardium [22], kidney [23], and liver [24].
In the context of lipid metabolism, Exo participation encompasses a range of processes,
including lipid synthesis, transport, and degradation. This is achieved through the transfer
of a variety of molecules, including fatty acids, cholesterol, ceramides, genetic material, and
enzymes [25]. ADSCs-Exo has been demonstrated to enhance insulin sensitivity, mitigate
obesity, and alleviate hepatic steatosis in a murine model of obesity [26]. ADSCs-Exo
has also been demonstrated to delay the progression of non-alcoholic fatty liver disease
(NAFLD) by the delivery of the anti-fibrotic microRNA-122 [27]. Despite the plethora of
studies that have demonstrated the beneficial effects of MSCs-Exo on lipid metabolism
and hepatic injury, the majority of these studies have focused on NAFLD. Consequently,
there is a paucity of knowledge regarding the abnormalities of lipid metabolism caused by
liver IRI. Additionally, most research has concentrated on small animal models, with fewer



Int. J. Mol. Sci. 2024, 25, 13069 3 of 20

studies involving large animals. This limitation hinders the transition from animal research
to human medicine.

Appropriate animal models are important in scientific research. Rodents are commonly
used as model animals [28], but due to genetic and anatomical differences, they are not fully
able to respond to human pathophysiological features, hindering the progress of research
towards human medicine. In recent years, studies have shown that miniature swine are
more similar to humans in physiology, anatomy, nutrient metabolism, drug metabolism,
and disease development [29,30], which has greatly facilitated the study of human diseases.

Therefore, this study employed laparoscopic, minimally invasive techniques to induce
liver IRI combined with hemi-hepatectomy in miniature swine, followed by treatment
with ADSCs-Exo. The experiment aimed to explore the effects of ADSCs-Exo on lipid
metabolism abnormalities after liver IRI. To provide insight into the use of MSCs-Exo for
the treatment of human liver injury from a comparative medicine perspective.

2. Results
2.1. Characteristics of ADSCs and ADSCs-Exo

The results discussed in this section are covered in our previous publication by the
research team [31], specifically in Sections 3.1 and 3.2. No further elaboration is necessary
at this point.

2.2. Ultrastructural Analysis of Hepatocytes

Figure 1 presents the results of the ultrastructural analysis of liver cells in each group.
Before surgery, all groups showed no structural abnormalities in hepatocytes. One day
after surgery, hepatocyte structure was normal in the Sham group. However, the IRI group
exhibited a large accumulation of lipid droplets, while the Exo and ADSCs groups showed
a small accumulation. Three days after surgery, hepatocyte ultrastructure remained normal
in the Sham group. The IRI group still exhibited lipid droplet accumulation, while the Exo
and ADSCs groups showed no accumulation. Seven days after surgery, hepatocytes in all
groups displayed normal structure.
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2.3. ADSCs-Exo Reduce Hepatic Lipid Accumulation

We studied the impact of ADSCs-Exo on hepatic lipid metabolism after hepatic IRI and
partial resection. This was conducted by measuring lipid accumulation in miniature swine
using oil red O staining. One day after surgery, we observed significant lipid accumulation
in the IRI group. In contrast, both the Exo and ADSCs groups showed reduced lipid
accumulation compared to the IRI group. No lipid accumulation was detected in any of
the groups at subsequent points in time. These findings are illustrated in Figure 2.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 4 of 19 
 

 

Figure 1. Ultrastructure of liver tissue observed by TEM (15,000×). N represents nucleus, M repre-
sents mitochondria, ER represents endoplasmic reticulum and LD represents lipid droplets. 

2.3. ADSCs-Exo Reduce Hepatic Lipid Accumulation 
We studied the impact of ADSCs-Exo on hepatic lipid metabolism after hepatic IRI 

and partial resection. This was conducted by measuring lipid accumulation in miniature 
swine using oil red O staining. One day after surgery, we observed significant lipid accu-
mulation in the IRI group. In contrast, both the Exo and ADSCs groups showed reduced 
lipid accumulation compared to the IRI group. No lipid accumulation was detected in any 
of the groups at subsequent points in time. These findings are illustrated in Figure 2. 

 
Figure 2. Oil red O staining in different groups. 

2.4. Results of HDL, LDL, TG, and CHOL in Serum 
We assessed the modulatory effects of Exo and ADSCs on serum levels of HDL, LDL, 

TG, and CHOL after IRI of the right hemisphere combined with a resection of the left 
hemisphere. The results are shown in Figure 3. At one day after surgery, HDL (Figure 3A), 
LDL (Figure 3B), TG (Figure 3C), and CHOL (Figure 3D) levels were significantly lower 
in the IRI group, the Exo group, and the ADSCs group compared with the Sham group (p 
< 0.01 or 0.01 < p < 0.05), and the levels of HDL, LDL, TG, and CHOL were found to be 
significantly higher in the Exo and ADSCs groups compared with the IRI group (p < 0.01 
or 0.01 < p < 0.05). At three days after surgery, the levels of HDL, LDL, TG, and CHOL 
were found to be significantly lower in the IRI group compared with the Sham group (p < 
0.01 or 0.01 < p < 0.05), and the levels of LDL and CHOL were found to be significantly 
lower in the Exo and ADSCs groups (p < 0.01 or 0.01 < p < 0.05), and the levels of LDL were 
found to be significantly higher in both the Exo and ADSCs groups (p < 0.01), while the 
levels of CHOL were found to be significantly higher in the Exo group (p < 0.01) in com-
parison to the IRI group. Nevertheless, the levels of LDL and CHOL were demonstrably 
lower in the ADSCs group in comparison to the Exo group (0.01 < p < 0.05). There were no 
significant differences in HDL, LDL, TG, and CHOL levels between the preoperative and 
7 d postoperative groups. 
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2.4. Results of HDL, LDL, TG, and CHOL in Serum

We assessed the modulatory effects of Exo and ADSCs on serum levels of HDL, LDL,
TG, and CHOL after IRI of the right hemisphere combined with a resection of the left
hemisphere. The results are shown in Figure 3. At one day after surgery, HDL (Figure 3A),
LDL (Figure 3B), TG (Figure 3C), and CHOL (Figure 3D) levels were significantly lower
in the IRI group, the Exo group, and the ADSCs group compared with the Sham group
(p < 0.01 or 0.01 < p < 0.05), and the levels of HDL, LDL, TG, and CHOL were found to be
significantly higher in the Exo and ADSCs groups compared with the IRI group (p < 0.01 or
0.01 < p < 0.05). At three days after surgery, the levels of HDL, LDL, TG, and CHOL were
found to be significantly lower in the IRI group compared with the Sham group (p < 0.01 or
0.01 < p < 0.05), and the levels of LDL and CHOL were found to be significantly lower in
the Exo and ADSCs groups (p < 0.01 or 0.01 < p < 0.05), and the levels of LDL were found
to be significantly higher in both the Exo and ADSCs groups (p < 0.01), while the levels
of CHOL were found to be significantly higher in the Exo group (p < 0.01) in comparison
to the IRI group. Nevertheless, the levels of LDL and CHOL were demonstrably lower
in the ADSCs group in comparison to the Exo group (0.01 < p < 0.05). There were no
significant differences in HDL, LDL, TG, and CHOL levels between the preoperative and
7 d postoperative groups.



Int. J. Mol. Sci. 2024, 25, 13069 5 of 20
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 5 of 19 
 

 

 
Figure 3. Effect of ADSCs-Exo on HDL (A), LDL (B), TG (C), and CHOL (D) levels in serum. Results 
are expressed as mean ± SD, * 0.01 < p < 0.05, ** p < 0.01 versus the Sham group. # 0.01 < p < 0.05, ## p 
< 0.01 versus the IRI group. & 0.01 < p < 0.05, versus the ADSCs-Exo group. 

2.5. Results of HDL, LDL, TG, and CHOL in Liver Tissue 
We assessed the modulatory effects of Exo and ADSCs on HDL, LDL, TG, and CHOL 

content in liver tissue after IRI of the right hemisphere combined with a hepatic resection 
of the left hemisphere. The results are shown in Figure 4. At one day after surgery, the 
levels of HDL (Figure 4A), LDL (Figure 4B), TG (Figure 4C), and CHOL (Figure 4D) were 
significantly higher in the IRI and Exo groups as well as in the ADSCs group compared 
with the Sham group (p < 0.01 or 0.01 < p < 0.05), and the levels of HDL, LDL, TG, and 
CHOL were found to be significantly lower in the Exo and ADSCs groups compared with 
the IRI group (p < 0.01 or 0.01 < p < 0.05). At three days after surgery, the levels of HDL, 
LDL, TG, and CHOL were found to be significantly higher in the IRI group compared to 
the Sham group (p < 0.01 or 0.01 < p < 0.05), and the levels of LDL, TG, and CHOL were 
found to be significantly lower in the Exo and ADSCs groups compared to the IRI group. 
No significant differences were observed in HDL, LDL, TG, and CHOL levels between the 
preoperative and 7-d postoperative groups. 

Figure 3. Effect of ADSCs-Exo on HDL (A), LDL (B), TG (C), and CHOL (D) levels in serum. Results
are expressed as mean ± SD, * 0.01 < p < 0.05, ** p < 0.01 versus the Sham group. # 0.01 < p < 0.05,
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2.5. Results of HDL, LDL, TG, and CHOL in Liver Tissue

We assessed the modulatory effects of Exo and ADSCs on HDL, LDL, TG, and CHOL
content in liver tissue after IRI of the right hemisphere combined with a hepatic resection
of the left hemisphere. The results are shown in Figure 4. At one day after surgery, the
levels of HDL (Figure 4A), LDL (Figure 4B), TG (Figure 4C), and CHOL (Figure 4D) were
significantly higher in the IRI and Exo groups as well as in the ADSCs group compared
with the Sham group (p < 0.01 or 0.01 < p < 0.05), and the levels of HDL, LDL, TG, and
CHOL were found to be significantly lower in the Exo and ADSCs groups compared with
the IRI group (p < 0.01 or 0.01 < p < 0.05). At three days after surgery, the levels of HDL,
LDL, TG, and CHOL were found to be significantly higher in the IRI group compared to
the Sham group (p < 0.01 or 0.01 < p < 0.05), and the levels of LDL, TG, and CHOL were
found to be significantly lower in the Exo and ADSCs groups compared to the IRI group.
No significant differences were observed in HDL, LDL, TG, and CHOL levels between the
preoperative and 7-d postoperative groups.
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2.6. Effect of ADSCs-Exo on the Expression of Genes Related to Lipid Metabolism

The lipid synthesis gene expression results are shown in Figure 5. The mRNA expres-
sion levels of LXR and SCD1 (Figure 5A,B) did not differ significantly among the groups at
any point in time. The mRNA expression levels of the SREBP-1, SREBP-2, ACC1 and FASN
(Figure 5C–F) were extremely significantly higher in the IRI group on days post-surgery
compared to that in the Sham group (p < 0.01), while they were downregulated by ADSCs-
Exo and ADSCs (p < 0.01 or 0.01 < p < 0.05 versus IRI). The mRNA expression levels of the
SREBP-2, ACC1, and FASN (Figure 5D–F) were extremely significantly higher in the IRI
group three days post-surgery compared to that in the Sham group (p < 0.01), while they
were downregulated by ADSCs-Exo and ADSCs (p < 0.01 or 0.01 < p < 0.05 versus IRI), and
ADSCs downregulated the expression of SREBP-1 mRNA(0.01 < p < 0.05, versus IRI). There
were no significant differences in the mRNA expression levels of SREBP-1, SREBP-2, ACC1,
and FASN at other points in time.
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The results of lipolytic mRNA expression are shown in Figure 6. The mRNA expression
levels of the PPAR-α and ACOX1 (Figure 6A,B) were extremely significantly lower in the
IRI group on days post-surgery compared to that in the Sham group (p < 0.01), while
they were upregulated by ADSCs-Exo and ADSCs (p < 0.01 or 0.05 < p < 0.01, versus IRI).
There were no significant differences in PPAR-α and ACOX1 mRNA expression levels
between groups at other points in time. There were no significant differences in the mRNA
expression levels of CROT and CPT1A (Figure 6C,D) among the groups at each point
in time.
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2.7. Effect of ADSCs-Exo on the Expression of Protein Related to Lipid Metabolism

The lipid synthesis protein expression results are shown in Figures 7 and 8. The protein
expression levels of LXR and SCD1 (Figure 8A,B) did not differ significantly among the
groups at any point in time. The protein expression levels of the SREBP-1, SREBP-2, ACC1,
and FASN (Figure 8C–F) were extremely significantly higher in the IRI group on days post-
surgery compared to that in the Sham group (p < 0.01), while they were downregulated by
ADSCs-Exo and/or ADSCs (p < 0.01 or 0.01 < p < 0.05) versus IRI. The protein expression
levels of the SREBP-2, ACC1, and FASN (Figure 5D–F) were extremely significantly higher
in the IRI group three days post-surgery compared to that in the Sham group (p < 0.01),
while they were downregulated by ADSCs-Exo and/or ADSCs (p < 0.01 or 0.01 < p < 0.05)
versus IRI. There were no significant differences in the protein expression levels of SREBP-1,
SREBP-2, ACC1, and FASN at other points in time.
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Figure 8. The protein expression of LXR (A), SCD1 (B), SREBP-1 (C), SREBP-2 (D), ACC1 (E), and
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The results of lipolytic protein expression are shown in Figures 7 and 9. The protein
expression levels of the PPAR-α and ACOX1 (Figure 9A,B) were significantly lower in the
IRI group on days post-surgery compared to that in the Sham group (0.01 < p < 0.05), while
they were upregulated by ADSCs-Exo (p < 0.01 or 0.05 < p < 0.01) versus IRI. There were no
significant differences in PPAR-α and ACOX1 protein expression levels between groups at
other points in time. There were no significant differences in the protein expression levels
of CROT and CPT1A (Figure 9).
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3. Discussion

This study established a minimally invasive laparoscopic partial hepatectomy model
combined with IRI in miniature swine to investigate the therapeutic effects of ADSCs-Exo
on lipid metabolism abnormalities following liver IRI.

The mechanisms involved in liver IRI are complicated. Liver ischemia causes tissue
hypoxia, depletes energy, and results in cell death. Reperfusion restores oxygen, triggering
oxidative stress and increasing inflammation, which worsens liver injury [32]. Lipid
metabolism also plays a key role in liver damage. Lipid metabolism disorders are intricately
linked to the onset and progression of a wide range of liver diseases. The accumulation
of lipids can amplify the release of inflammatory factors and lipid peroxides when the
liver experiences oxidative stress. In patients with hepatocellular carcinoma undergoing
partial liver resection, the prevalence of liver steatosis contributes to an increased risk of
postoperative liver failure [33]. This study observed that after liver IRI, liver lipid levels
increased while serum lipid levels decreased. Liver histological analysis via oil red O
staining and transmission electron microscopy revealed characteristic fatty degeneration
within the liver tissue.

MSCs are recognized as a type of versatile stem cell that are ubiquitously distributed
across numerous body tissues. A substantial body of evidence derived from animal models
and clinical trials has consistently demonstrated the therapeutic potential of MSCs in the
treatment of organ damage [34]. In the context of liver disease research, MSCs have received
considerable attention due to their potential to alleviate liver injury, enhance liver func-
tion, and facilitate hepatocyte regeneration [35]. In the studies focusing on non-alcoholic
steatohepatitis (NASH), it has been demonstrated that after the administration of MSCs,
there is a significant reduction in liver lipids [36,37]. In the NAFLD model, transplantation
of fat-metabolizing hepatocyte-like MSCs has been demonstrated to effectively reduce
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lipid accumulation, thereby reversing the process of steatosis and ultimately restoring
liver function [38,39]. The present experimental study addresses the dysregulation of lipid
metabolism following IRI in the liver by transplanting ADSCs. By reversing the aberrant
expression of genes and proteins involved in lipid metabolism, ADSCs effectively mitigate
excessive fat accumulation within hepatocytes, thereby ameliorating metabolic disorders.
This treatment ultimately results in the alleviation of hepatic steatosis and the restoration of
functional liver capabilities. The statement is consistent with prior experiments conducted
by our research team [40]. In the study of abnormalities of hepatic lipid metabolism, the
effects of MSCs on lipid metabolism are beneficial. These effects are achieved by regulating
the normal expression of adipose-related genes [41].

Exo are nanoscale (30–150 nm) vesicles secreted by cells and are widely distributed
in various bodily fluids [42]. These cargo carriers contain numerous regulatory factors
that are crucial for influencing the surrounding environment and communication between
cells [43]. Current research shows that MSCs-Exo are essential for the homing process. This
process influences cellular proliferation, differentiation, and immune response modulation.
Exo have been shown to have a remarkable ability to promote self-repair after cellular
injury and aid in tissue regeneration [44]. MSCs-Exo regulates downstream inflammatory
genes by delivering miRNAs such as miR-21, miR-146a and miR-181 to promote anti-
inflammatory M2 macrophage polarization and inhibit pro-inflammatory M1 macrophages
to treat nerve injury [45]. Hypoxic preconditioning of MSCs increases HIF-1α in Exo and
promotes bone regeneration in a rabbit model of osteonecrosis [46]. MSC-Exo play a pivotal
role in the pathogenesis of numerous pathological conditions. The co-culture of ADSCs-
Exo with adult neuroblastoma cells exhibiting high β-amylose expression demonstrated
that ADSCs-Exo is capable of transporting substantial quantities of enkephalinase and
diminishing intracellular and extracellular β-amylose peptides. These findings suggest
that ADSCs-Exo may offer a promising avenue for Alzheimer’s disease treatment [47,48].
Wan et al. [49]. demonstrated that MSCs-Exo protected against acute kidney injury (AKI)
by inhibiting focal death in rat and NRK-52E cells. Furthermore, Exo therapy offers the
potential to address concerns regarding the safety profile of stem cell applications [50]. An
increasing number of studies have demonstrated that MSCs-Exo exert protective effects on
the liver. These effects occur by regulating insulin resistance, enhancing lipid metabolism,
reducing oxidative stress, and decreasing inflammation [37,51,52]. Studies on the combined
effects of MSCs and MSCs-Exo in treating NASH have shown significant reductions in liver
fat accumulation and swelling [53]. The therapeutic benefits are due to their capacity to
interfere with fatty acid metabolism by downregulating key genes involved in fat synthesis,
specifically SREBP-1, SREBP-2, and ACC, as well as inhibiting lipid uptake through CD36.
Furthermore, BMSC Exo have been observed to upregulate genes that promote fat oxidation,
including PPAR-α and ACOX1 [54].

Despite the encouraging outlook for MSCs transplantation, the majority of ongoing
clinical trials are still in the initial phases, typically I or II. The clinical trial failure of au-
tologous and allogeneic MSCs products has been a recurring phenomenon. Moreover,
there have been reports indicating an increased risk of tumor formation and cell death
following MSCs transplantation [55]. In contrast to MSCs, MSCs-Exo is not capable of
self-replication and does not induce tumors of a medically defined nature [56]. With regard
to preservation, MSCs are more demanding, and MSCs-Exo can be preserved at −80 ◦C
or in liquid nitrogen. Furthermore, the addition of DMSO is not required, as this better
protects the bioactivity of MSCs-Exo [57]. MSCs-Exo lacks MHC antigens and thus presents
a minimal risk of alloimmune rejection, which enhances its stability and preservation
in vivo. In contrast to MSCs, MSCs-Exo are vesicles that encapsulate a range of biologi-
cal molecules, including miRNAs, mRNAs, lipids, proteins, genes, and even organelles.
Notably, they are capable of crossing the blood–brain barrier [58]. Multiple organ failure
is a common occurrence in clinical settings and is typically attributed to mitochondrial
dysfunction [58]. MSCs-Exo possess the capacity to encapsulate functional mitochondria,
facilitating mitochondrial transfer [58,59]. This phenomenon, coupled with the inherent
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limitations of clinical applications involving MSCs [60], underscores the potential value
of further research and applications of MSCs-Exo. Engineered Exo improve therapeutic
efficacy through bioengineering techniques that modify Exo or donor cells in a more precise
manner. This results in Exo having a longer circulating half-life and greater targeting
ability, as well as reducing drug systemic distribution and adverse effects [61]. In a mouse
breast cancer model, Gomari et al. [62]. demonstrated that MSCs-Exo-delivered adriamycin
markedly diminished tumor growth. Exo are biocompatible and can effectively mitigate
the toxicity and adverse effects of chemotherapeutic drugs. It has been demonstrated
that large nucleic acid substances, including mRNA and DNA, can be loaded into Exo
through transfection or electroporation methods [63]. This allows for their delivery to
tumor cells, where they can inhibit cellular activity and promote apoptosis, ultimately
improving the survival rate of mice. Concurrently, the utilization of exosome advantages
in conjunction with tissue engineering materials can facilitate enhanced drug delivery
efficiency. Han et al. [64]. developed a hybrid microneedle array patch comprising MSCs-
Exo and hydrogel. This patch was employed to facilitate the local release of Exo in situ
following spinal cord surgery. This approach not only enhanced the efficacy of a single
administration but also circumvented the potential complications associated with repeated
local injection of Exo. In a study conducted by Hu et al. [65]., Exo-coated eluting stents
were found to effectively accelerate re-endothelialization and reduce restenosis within the
stent. Qi et al. [66]. modified the transferrin receptor of blood-derived exosomes with
magnetic nanoparticles and subsequently utilized external magnets to direct the exosomes
to mouse tumors, thereby creating targeted drug delivery vehicles for cancer therapy. The
aforementioned evidence collectively suggests that MSC-Exo has considerable potential as
a cell-free therapeutic agent. In conclusion, MSC-Exo demonstrate considerable promise as
a cell-free therapeutic modality.

Numerous studies [50,67,68] have shown that MSCs-Exo can transport various com-
ponents and are effective in treating liver metabolic diseases. Although there is extensive
research, most studies have focused on small animal models. Investigations involving
larger animals are still in the early stages. As a large model animal, the miniature swine is
very similar to humans in terms of anatomical structure, organ size, and physiology [69],
as well as biochemical characteristics and genome [70], which can compensate for the
shortcomings of rodent models that lack the ability to study some human diseases. In a
study related to hepatic lipid abnormalities, Lee et al. [71]. established the first large animal
model of diet-induced steatohepatitis by feeding high-fat diets to minipigs for 24 weeks,
which showed characteristics very close to those of the metabolic syndrome of NAFLD in
humans. The knockout of the leptin gene in Chinese experimental miniature swine was
achieved using zinc finger nuclease gene editing technology [72]. The resulting phenotype
exhibited a developmental pattern of non-alcoholic liver injury that was consistent with
that observed in the obese population. In porcine-primate liver xenotransplantation [73],
the porcine liver is also capable of sustaining essential lipid metabolism over time in non-
primates. It can be demonstrated that the pig is a more appropriate model for the study of
abnormalities in human hepatic lipid metabolism. This study demonstrated the potential
of Exo to ameliorate lipid abnormalities and liver IRI in large animals using miniature
swine as experimental subjects. These findings provide a basis for future studies of liver
dyslipidaemia in large animals and, from a comparative medicine perspective, provide
new insights into the treatment of dyslipidaemia caused by liver injury in humans.

There are some limitations in this study, which only broadly investigated the effect
of Exo on lipid metabolism-related indexes after IRI in miniature swine livers, and did
not explore in depth the specific role of Exo in regulating lipid metabolism in these cell
organelles, and the specific pathways and targets were not clarified. In addition, what kind
of substances in Exo play a role also needs to be further explored.
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4. Materials and Methods
4.1. Experimental Animals

Following approval from the Institutional Animal Care and Use Committee at North-
east Agricultural University, we used twenty-four healthy Bama miniature swine, aged
3 to 4 months and weighing between 20 and 30 kg, with free access to food and water in
this experiment.

4.2. Isolation and Culture of ADSCs

Miniature swine were anesthetized using standard procedures, and inguinal fat was
collected aseptically. Fascial vessels were excised in a sterile chamber. The fat was then cut
into small pieces and digested with 0.1% collagenase type I in a 37 ◦C water bath. After
digestion, the mixture was centrifuged at 1500 rpm for 10 min. The precipitate was added to
a complete medium consisting of low-sugar DMEM, 10% FBS, 1% penicillin-streptomycin,
and 1% glutamine to complete digestion, and then filtered through a 200-mesh copper sieve.
The filtrate was centrifuged, then resuspended in complete medium and inoculated into
flasks at a density of 2.5 to 3 × 104 cells/cm2. The medium was changed after 24 to 48 h to
eliminate unattached cells. Cells were passaged once they reached 70 to 80% confluence.

4.3. Characterization of ADSCs

Single cell suspensions were prepared following the instructions for the antibod-
ies: CD29 (Abcam, ab21845, Cambridge, UK), CD44 (Abcam, ab95138), CD90 (Abcam,
ab124527), and CD11b (Biolegend, 301329, San Diego, CA, USA). Flow cytometry was
used to detect the positively stained ADSCs, and the analysis was performed with FACSD
software (FACSDiva Version 6.1.3, BD, New York, NY, USA). The adipogenic and hepato-
genic differentiation of ADSCs from 3 to 5 generations was conducted according to the
differentiation kit instructions.

4.4. Isolation and Purification of ADSCs-Exo

Cells were cultured until they reached 80% confluence after 3 to 5 generations. The
medium was then removed, and the cells were washed three times with PBS. Finally, a
serum-free medium was added, and the cells were placed in a 37 ◦C, 5% CO2 incubator for
further culture. The cell culture supernatant was collected after 36 to 48 h. The cells were
sequentially centrifuged at 300× g for 15 min to remove dead cells, and then at 2000× g for
20 min to remove cell debris, all at 4 ◦C. The supernatant was filtered through a 0.22 µm
filter to eliminate larger extracellular vesicles. The final ADSCs-Exo, which appeared as a
tan precipitate, were suspended in sterile PBS and stored at −80 ◦C for future use.

4.5. Identification of ADSC-Exo

The nanoparticle tracking analysis (NTA) from Particle Metrix (Inning am Ammersee,
Germany) was used to determine the size and number of ADSC-Exo. Subsequently, the
morphology of the Exosomes was examined using transmission electron microscopy (TEM)
from Hitachi (Tokyo, Japan), employing the phosphotungstic acid negative staining method.
Western blot analysis was conducted to identify the characteristic Exosomal antigens CD63,
CD81, and TSG101.

4.6. Surgical and Experimental Design

Twenty-four healthy Bama miniature swine, aged 3 to 4 months and weighing between
20 and 30 kg, were randomly assigned to four groups: Sham, IRI, Exo, and ADSCs. Liver
IRI combined with partial resection was performed as previously described. Briefly, the
miniature swine were fasted for 24 h and hydrated for 12 h. Anesthesia was maintained
by tracheal intubation with isoflurane after induction with propofol. The abdomen was
routinely sterilized, and a four-cannula laparoscopic surgical access with 10 mmHg pneu-
moperitoneum was established. A homemade tourniquet was used to block blood flow to
the right half of the liver. After 1 h, the tourniquet was removed to restore blood supply.
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The blood flow to the left half of the liver was blocked and resected in the same manner,
and finally, the corresponding therapeutic substances were slowly injected through the
portal vein. The Exo group received an injection with 5 × 109 ADSC-Exo per kg dissolved
in 5 mL of sterile PBS, while the ADSCs group was injected with 1 × 106 ADSCs per kg,
also dissolved in 5 mL of sterile PBS. The Sham and IRI groups received the same volume
of sterile PBS. Following the injection of the therapeutic substance and confirmation of no
bleeding, the abdominal cavity was rinsed with saline, and the resected left half of the liver
was placed in a specimen bag for removal. Gas was drained from the abdominal cavity, and
the trocar opening was routinely sutured. Anesthesia was switched off, and the animals
were managed postoperatively. Blood was collected from the anterior vena cava. Liver
tissue specimens were obtained using minimally invasive laparoscopic techniques on the
preoperative day, as well as on days 1, 3, and 7, postoperatively.

4.7. Ultrastructural Analysis

Fresh liver tissue samples were first cut into 1 mm3 pieces, then pre-fixed in 2.5%
glutaraldehyde, post-fixed in 1% osmium, embedded in neutral resin, and finally sectioned
into ultrathin slices. The specimens were stained with uranyl acetate and lead citrate,
then examined under a transmission electron microscope to observe lipid droplets in
the hepatocytes.

4.8. Oil Red O Stain

Frozen liver tissues were embedded in an OTC medium and sliced into 8 µm sec-
tions using a frozen sectioning machine. The sections were stained with oil red O and
subsequently re-stained with hematoxylin. Under the microscope, the lipid droplets ap-
peared red.

4.9. Measurement of HDL, LDL, TG and CHOL

Blood samples were centrifuged at 3500 rpm for 15 min. Serum levels of HDL, LDL, TG,
and CHOL were then measured using a BioTek blood biochemistry analyzer (TBA-2000FR,
Canon Medical. Systems Corporation, Tochigi, Japan).

A 10% liver tissue homogenate was prepared using cold saline. This homogenate
was processed according to the instructions of the HDL(Jiangcheng, Nanjing, China), LDL,
TG, and CHOL kits. Measurements were taken at the appropriate wavelengths using an
enzyme marker.

4.10. RNA Extraction and Real-Time Quantitative Polymerase Chain Reaction

Total RNA was extracted from liver tissues using Trizol (Invitrogen, Carlsbad, CA,
USA). The RNA was then quantified and reverse transcribed into cDNA. The target gene
was amplified using a three-step RT-PCR process in the LightCycler 480 (Roche, Basel,
Switzerland) with the SYBR Green I reaction mix (Vazyme, Nanjing, China). The relative
fold change in gene expression was calculated using the 2−∆∆Ct method and normalized to
β-actin levels. Primers were synthesized by UW Genetics, and their sequences are provided
in Table 1.
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Table 1. Gene-specific primers used for RT-qPCR.

Gene Forward Primer Sequence (5′-3′) Reverse Primer Sequence (5′-3′)

β-actin TCTGGCACCACACCTTCT TGATCTGGGTCATCTTCTCAC
LXR GTTGCACATGGCCTGGTCAC CTCCACTGCAGAGTCAGGAGA

CROT AGCTTCACCCTGATGCGTTT GCCGCTCAGAAAGACTGGT
SREBP-1 CAGCTCCATTGACAAGGCCA GCACCCCATCTACACTACGC

FASN TGGATCACTGCATAGACGGC TGGTACACCTTCCCGCTTG
SCD1 TCATTGGGAGCTGTGGGTGAG ACAGGGGCTTTCCCAGAAGAT

ACOX1 GAACCAGGACCTACAGAAGGAG TCCTCGCTGCACAAAGTTTTTA
SREBP-2 CTCGGTTTCGGCAGACCAT TGGTGAAGGAACCAGCTCTT

ACC1 TGGCTAAACCTCTGGAGTTGAA CTGCCATCTTAATGTATTCAGCGT
PPAR-α TTTCCACAAGTGCCTCTCGG GTGTATGACGAAAGGCGGGT
CPT1A ATGTACGCCAAGATCGACCC CCACCAGTCGCTCACGTAAT

4.11. Western Blotting

The total proteins were extracted from liver tissues and analyzed using Western
Blotting, following the methods outlined in reference [74]. The nitrocellulose membrane
was incubated with LXR (1:1000, Bioss, bs-18451R, Beijing, China), CROT (1:1000, Bioss,
bs-6365R), SREBP-1 (1:1000, Immunoway, YT6055, Plano, TX, USA), FASN (1:1000, AB-
clonal, A21182, Wuhan, China), SCD1 (1:1000, Bioss, bs-3787R), ACOX1 (1:1000, Bioss,
bs-5021R), SREBP-2 (1:500, Santa Cruz, sc-13552, Santa Cruz, CA, USA), ACC1 (1:1000,
ABclonal, A19267), PPAR-α (1:1000, Bioss, bs-3614R), CPT1A (1:1000, Bioss, bs-23779R),
and GAPDH (1:50,000, ABclonal, A19056) at 4 ◦C. Next, the membranes were incubated at
room temperature for 2 h with the appropriate horseradish peroxidase (HRP)-conjugated
secondary antibodies (Bioss, Beijing, China). Protein bands were developed using ECL
(meilunbio, Dalian, China) with the Tanon 5200 system (Tanon Science & Technology Co.,
Ltd., Shanghai, China). The average optical density of the bands was then calculated using
ImageJ (1.53, NIH, Bethesda, MD, USA).

4.12. Statistical Analysis

Statistical analysis was performed using Graphpad prism 8.0. All data were expressed
as mean ± standard deviation. One-way ANOVA and LSD tests were used to compare the
groups, and a p-value less than 0.05 was considered statistically significant.

5. Conclusions

ADSCs-Exo have shown the potential to improve lipid metabolism disorders following
liver ischemia-reperfusion injury in miniature swine. Our research findings support the
development of future medical treatments for lipid metabolism disorders in larger animals
and, eventually, in humans in the area of liver health.
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